i ﬁéhﬁ A
yiICALEPCS I,

Jakub Wozniak

G. Kruk, S. Deghaye
BE/ICO/AP CERN, Geneva, Switzerland

ICALEPCS'09
Kobe, Japan
14/10/2009

NEW WAVE OF
COMPONENT REUSE
WITH SPRING
FRAMEWORK

AP CASE STUDY

Jakub Wozniak, TERM, BEICOHAF

Agenda

® Spring Framework

® Dependency Injection and loC Pattern
® Design for Reuse

® CERN Examples

® Lessons learned

® Questions

10542009 Jakub Wozniak, CEREN, BE/COMAR

Spring Framework

® OpenSource framework existing since early
2003 for Java and .NET

@ Designhed to make the entreprise development
easler
* Non-intrusive Dependency Injection patterns
e Only POJOs — just simple classes called beans
e Used as a glue code
e Allows to focus on business operations

@ Largely modular architecture allows using only
specific parts

® Promotes robustness, extensibility and
reusabillity by nature

1O 92003 Jakub Wozniak, TERM, BEICOHAF

Dependency Injection

® How objects get their dependencies

® Just simple setters or constructor
arguments

® Dependencies are managed and
“Injected” by container during runtime

@ aka Inversion of Control or Hollywood

Principle (don’t call us we will call you).

1O 92003 Jakub Wozniak, TERM, BEICOHAF

Old Style Dependency Management @\

Motor Sensors
Controller Controller
A\ J
Factory.newlnstance() Oper new()

\

o
L]
o

=
(JNDI) lookup

2
‘ Power Supply ‘
Controller

1O 92003

/

Jakub Wozniak, TERM, BEICOHAF

®

®

O,

O,

®
O,

e

Object has to find its
dependencies Ifself

Strong coupling
between objects

Mix of business and

framework plumbing

code

Difficult to change
Implementation

Difficult to test
Difficult to reuse

New Dependency Injection Style

Spring Container — Glue code sensors

Controller

Motor
Controller

| 4 .P:nwer-SLipply
Controller

1O 92003 Jakub Wozniak, TERM, BEICOHAF

@

®

®

O,

Prevents hard-
coded object
creation or
service lookup

Loose coupling
between objects

Only business
code

Helps write
effective unit tests
with mocks

—asy reuse of
components!

Design Principles

®

Use interfaces, hide the implementation
 Easy testing, easy integration
 They constitutes components

Create your domain objects — common
language between different systems

* No problems with eventual integration

Use similar solutions everywhere

» Easy code takeover and maintenance
* Less dependencies

Extract generic code from the rest

* Maybe you will reuse it somewhere else so...

e Keep it clean!

1O 92003 Jakub Wozniak, TERM, BEICOHAF

CERN Examples

10419/2009 Jakub Wazniak, CERN, BE/COAR g

CERN Examples

lI.-- SECTOR DEPENDENT: NO BEA
' - - e e e [

'\

EREEE

Accsoft-
- commons
Data Acquisition Framework
Japc-monitoring
Japc
L J

1O 92003 Jakub Wozniak, TERM, BEICOHAF 9

| essons Learned

® More attention to common language
® Systems developed In cooperation

@ Code duplication tracking and removal

« Smaller code base
* Less maintenance problems

@ Common knowledge base and change
management

e Existing components
e Changes to libraries
* Release synchronization and tracking

@ More emphasis on software quality standards
and testing

1O 92003 Jakub Wozniak, TERM, BEICOHAF

Thank you for your attention!

Questions?

