
・ A new pure Java channel access library JCAL has been developed for Java applications in J-PARC control system. The design and 
implementation of JCAL is thread safe and robust. Benchmark tests show comparable performance with JCA-JNI and JCA-CAJ.

DEVELOPMENT OF A NEW JAVA CHANNEL ACCESS LIBRARY JCAL
Hiroyuki Sako1, Hiroshi Ikeda2

1JAEA (Japan Atomic Energy Agency), 2VIC (Visible Information Center, Inc.)

Class Functions
Context Library environment
Channel EPICS channel (API)
Monitor EPICS monitor (API)
Manager Manager to control the internal thread

ClientManager Manager for Client and Subscription
Client Inner class of Channel, accessed only by the 

internal thread 
Subscription Inner class of Monitor, accessed only by the 

internal thread
RepeaterTransport Communication with Repeater (UDP/IP)

BroadcastTransport Communication in broadcast (UDP/IP)

ClientTransport Communication with server (TCP/IP)

Abstract : Java channel access library JCA (Java Channel Access library) has been widely used for device control applications 
in Java. Especially for high-level applications in the J-PARC linac and RCS (Rapid-Cycling Synchrotron) control systems, which are 
unified in Java, the pure version of JCA implementation (CAJ) is desirable. However, JCA and CAJ have instability problems and 
vulnerability of the codes. To overcome the issues, a new compact Java channel access library, JCAL (Java Channel Access Light 
library) has been developed. A special care is taken to design the code architecture in order to keep thread safety and code 
robustness. The main part of the library is designed to work in a single thread, with the other threads for the monitor call-back. By 
adopting such a simple design, robustness and stability is realized. An adapter library for JCA API, JCA-JCAL, has been also 
implemented to plug in JCAL easily to existing Java applications using JCA-JNI and JCA-CAJ. Benchmark tests have been carried 
out and compared to JCA, which show comparable performance.

Summary and Outlook

JCAL (Java Channel Access Light library)
• Single-threaded architecture for thread safety
• User thread can be multi-threaded
• Threads for monitor callback
• Abstract API
• Dbr: immutable fundamental data
• Future pattern

JCAL classes
Benchmark Test

THP089

Get test

<<thread safe>>

Context
<<thread safe>>

Manager

<<thread safe>>

Channel
C lient

<<thread safe>>

Monitor Subscription

ClientTransport

BroadcastTransport

*

*
*

ClientManager

RepeaterTransport

*

*

c
re

at
e

cr
e
at

e

*

internal thread
outer threadsOuter threads

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

Connect test Put test

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500

number of channels

d
u
ra

ti
o
n
 (

m
s)

JCAL(async)

JCA-JCAL(sync)

CAJ(sync)

JCA-Single(sync)

JCA-Multi(sync)

JCA-JCAL(async)

CAJ(async)

JCA-Single(async)

JCA-Multi(async)

Average time / channel (msec)
environment test JCAL JCA-JCAL CAJ JCA-JNI (single) JCA-JNI (multi)
A connect
B connect 0.31 0.34 1.01 0.59 0.63

B get 0.040 0.071 0.026 0.031 0.101
A put 0.038 0.022 0.029 0.044 0.048

A get 0.011 0.012 0.0061 0.0074 0.074

0.037 0.051 0.099

put

0.0720.035

0.15B 0.16 0.37 0.15 0.18

Environment A (ideal)
Soft IOC: Dell dimension 4500C

Pentium 4 2.4 GHz
Client: Dell PowerEdge 830

CPU: Pentium D 3 GHzx2
Memory: 1GB

Environment B (realistic)
Beam monitor IOCs: VME Advme7501AR
Client: IBM ThinkPad Lenovo R60

CPU: Genuine Intel T2300 1.7GHzx2 
Memory: 1GB

– Unstable behavior
• Connection lost

– Thread unsafe
• Insufficient or inconsistent synchronizations
• Anti-pattern : invoking wait method without a condition loop
• Anti-pattern : starting thread in its constructor

– Vulnerable internal structure
• Broken encapsulation

–Returning mutable fields without defensive copy
–Exposing the reference this in the constructor 

• Strong inter-dependencies among packages
–Difficult to maintain and extend

– Too concrete implementation in API
• API should be more abstract

–For maintenance
–User do not need to know implementation details

• Users are forced to use problematic implementations
–DBR (fundamental data structure) is not immutable nor thread safe.
–Hard to repair it to keep backward compatibility

JCA Issues

Thread-safe
implementation

Internal single thread

Results

•JCAL is comparable with JCA-JNI 
(single-threaded) and CAJ.
•JCA-JNI (single-threaded) is fastest.
•JCA-JCAL is similar to JCAL

–JCA-JNI (multi-threaded) is slow. 

Test in Environment A


	DEVELOPMENT OF A NEW JAVA CHANNEL ACCESS LIBRARY JCAL��Hiroyuki Sako1, Hiroshi Ikeda2�1JAEA (Japan Atomic Energy Agency), 2VIC

