

ICALEPCS 2009

The CMS ECAL Detector Control System

Diogo Di Calafiori ETH Zurich

(on behalf of the CMS ECAL DCS group)

OUTLINE

- Introduction
- ❖ The CMS ECAL DCS Layout
- The DCS Hardware
- The DCS Software
- The DCS/ESS Action Matrix
- The Operational Experience
- ❖ Next Steps
- Conclusion

INTRODUCTION

Large Hadron Collider (LHC)

Compact Muon Solenoid (CMS)

Electromagnetic Calorimeter (ECAL)

ECAL Detector Control System (DCS)

CMS ECAL DCS LAYOUT

THE DCS HARDWARE

ECAL Safety System:

- Fully installed and operational during all the commissioning and running periods;
- No issues concerning the readout systems;
- Hardware problems, their sources and corrections:
 - 2 defective CP341 communication modules + 1 active backplane replaced (under investigation by SIEMENS);
 - 1 defective interlock unit metallic dust replaced / rack door to be installed;
 - WLD sensors installation issues short to ground solution under investigation.

THE DCS HARDWARE

Precision Temperature and Humidity Monitoring;

- Fully installed and operational during all the commissioning and running periods;
- No issues concerning the temperature readout system;
- Humidity readout system affected by cables capacitance reliable measurements only for RH > 60%;
- Hardware problems, their sources and corrections:
 - 7 out of 516 temperature sensors working out of specifications masked;
 - 1 out of 516 temperature sensor broken (since the installation) masked;
 - 10 out of 164 humidity sensors presenting high noise levels masked.

THE DCS SOFTWARE

Composed by 11 subsystems:

- Supervisor
- Low Voltage
- High Voltage
- SM/DEE Air Temperatures
- Cooling Monitoring
- ➤ PTHM
- ➤ ECAL Safety System
- Preshower Ctrl. & Mon.
- VME Crates Control
- Laser Monitoring
- > DCU

Overview of the system:

- Fully integrated to the CMS DCS, operated locally by ECAL shifters or centrally by CMS shifters;
- Two-level role-based access control: operator / expert;
- ➤ EB/EE control and monitoring of:

 - 860 low voltage channels
 1240 high voltage channels
- 20 VME crates

- Monitoring of:
 - 516 precision temp. sensors
 - 56 ES temp. sensors
 - 352 ESS temp. sensors
 - 40 cooling control temp. sensors
 - 164 humidity sensors

- 40 water leak det. sensors
- 55 laser parameters
- 8 magnet parameters
- > 160.000 DCU parameters

THE DCS SOFTWARE

The ECAL DCS Supervisor:

- ✓ Handles the interactions between all CMS ECAL DCS subsystems;
- ✓ The main panel allows the user to:
 - Monitor the overall status of all subsystems;
 - Instantly find the source of possible problems;
 - Control the power to the LV, HV and VME crates;
 - Manually shutdown the detector or its partitions.

- ✓ State diagram based on the CMS DCS standard;
- ✓ PARTLY_ON summarizes all transitions and unexpected states;
- ✓ Controlled ON/OFF switching sequence (OFF ↔ STANDBY ↔ ON);
- ✓ Automatic controlled shutdown via software.

THE DCS/ESS ACTION MATRIX

OPERATIONAL EXPERIENCE

- All ESS actions on MSS and DSS signals have proven to be reliable;
- ➤ On a single occasion:
- Scenario: ECAL fully powered + SM/DEE Cooling failure + Operational mistake (no automatic reaction from the ESS)

 Additional safety layers: Alerting system (SMS/Emails) + Fast expert intervention
- Result: No damage to the detector!!!
- Automatic controlled shutdown via software has proven to be very efficient;
- Software applications were upgraded regularly according to user's feedback and additional components were developed and integrated;
- Permanent DCS expert on-call service has guaranteed the maximum availability of the detector.

NEXT STEPS

Hardware:

- Additional interlocks to be used by the OPFCs of the LV system;
- A new readout system for humidity monitoring is under consideration;
- Implementation of a setup, reproducing the current DCS configuration in a small scale, to be used for tests and further development;

Software:

- Automatic health check mechanisms to be implemented;
- Central database services to be improved and made more reliable;
- User interfaces to be improved;
- Finalize the documentation.

CONCLUSION

- ✓ The CMS ECAL DCS has achieved a reliable and stable configuration;
- ✓ The automatic controlled shutdown via software in addition to the safety system protection mechanisms enables an even safer operation of the detector;
- ✓ Still some room for improvements for both hardware and software;
- ✓ And the most important:

The ECAL control system is ready for the LHC startup!!!

(foreseen for November 2009)

